enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enzyme assay - Wikipedia

    en.wikipedia.org/wiki/Enzyme_assay

    The rate of a reaction is the concentration of substrate disappearing (or product produced) per unit time (mol L −1 s −1).. The % purity is 100% × (specific activity of enzyme sample / specific activity of pure enzyme).

  3. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    in which e is the concentration of free enzyme (not the total concentration) and x is the concentration of enzyme-substrate complex EA. Conservation of enzyme requires that [28] = where is now the total enzyme concentration. After combining the two expressions some straightforward algebra leads to the following expression for the concentration ...

  4. Enzyme unit - Wikipedia

    en.wikipedia.org/wiki/Enzyme_unit

    The enzyme unit, or international unit for enzyme (symbol U, sometimes also IU) is a unit of enzyme's catalytic activity. [ 1 ] 1 U (μmol/min) is defined as the amount of the enzyme that catalyzes the conversion of one micro mole of substrate per minute under the specified conditions of the assay method .

  5. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    As shown on the right, enzymes with a substituted-enzyme mechanism can exist in two states, E and a chemically modified form of the enzyme E*; this modified enzyme is known as an intermediate. In such mechanisms, substrate A binds, changes the enzyme to E* by, for example, transferring a chemical group to the active site, and is then released.

  6. Turnover number - Wikipedia

    en.wikipedia.org/wiki/Turnover_number

    In chemistry, the term "turnover number" has two distinct meanings. In enzymology , the turnover number ( k cat ) is defined as the limiting number of chemical conversions of substrate molecules per second that a single active site will execute for a given enzyme concentration [ E T ] for enzymes with two or more active sites. [ 1 ]

  7. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Enzyme activity. An enzyme's name is often derived from its substrate or the chemical reaction it catalyzes, with the word ending in -ase. [1]: 8.1.3 Examples are lactase, alcohol dehydrogenase and DNA polymerase. Different enzymes that catalyze the same chemical reaction are called isozymes. [1]: 10.3

  8. Competitive inhibition - Wikipedia

    en.wikipedia.org/wiki/Competitive_inhibition

    Michaelis–Menten plot of the reaction velocity (v) against substrate concentration [S] of normal enzyme activity (1) compared to enzyme activity with a competitive inhibitor (2). Adding a competitive inhibitor to an enzymatic reaction increases the K m of the reaction, but the V max remains the same.

  9. Flux (metabolism) - Wikipedia

    en.wikipedia.org/wiki/Flux_(metabolism)

    The flux in a reaction can be defined based on one of three things The activity of the enzyme catalysing the reaction; The properties of the enzyme; The metabolite concentration affecting enzyme activity. [5]