Search results
Results from the WOW.Com Content Network
Given a homogeneous polynomial of degree with real coefficients that takes only positive values, one gets a positively homogeneous function of degree / by raising it to the power /. So for example, the following function is positively homogeneous of degree 1 but not homogeneous: ( x 2 + y 2 + z 2 ) 1 2 . {\displaystyle \left(x^{2}+y^{2}+z^{2 ...
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. [1] For example, x 5 + 2 x 3 y 2 + 9 x y 4 {\displaystyle x^{5}+2x^{3}y^{2}+9xy^{4}} is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5.
It has a ring automorphism that interchanges the sequences of the n elementary and first n complete homogeneous symmetric functions. The set of complete homogeneous symmetric polynomials of degree 1 to n in n variables generates the ring of symmetric polynomials in n variables. More specifically, the ring of symmetric polynomials with integer ...
A differential equation can be homogeneous in either of two respects. A first order differential equation is said to be homogeneous if it may be written (,) = (,), where f and g are homogeneous functions of the same degree of x and y. [1] In this case, the change of variable y = ux leads to an equation of the form
In the case of polynomials in more than one indeterminate, a polynomial is called homogeneous of degree n if all of its non-zero terms have degree n. The zero polynomial is homogeneous, and, as a homogeneous polynomial, its degree is undefined. [c] For example, x 3 y 2 + 7x 2 y 3 − 3x 5 is homogeneous of degree 5. For more details, see ...
Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...
Polynomial rings and their quotients by homogeneous ideals are typical graded algebras. Conversely, if S is a graded algebra generated over the field K by n homogeneous elements g 1, ..., g n of degree 1, then the map which sends X i onto g i defines an homomorphism of graded rings from = [, …,] onto S.
If y 2 = x 3 − x − 1, then the field C(x, y) is an elliptic function field. The element x is not uniquely determined; the field can also be regarded, for instance, as an extension of C(y). The algebraic curve corresponding to the function field is simply the set of points (x, y) in C 2 satisfying y 2 = x 3 − x − 1.