enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonality (term rewriting) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(term_rewriting)

    Orthogonality as a property of term rewriting systems (TRSs) describes where the reduction rules of the system are all left-linear, that is each variable occurs only once on the left hand side of each reduction rule, and there is no overlap between them, i.e. the TRS has no critical pairs.

  3. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    A term rewriting system is said to be orthogonal if it is left-linear and is non-ambiguous. Orthogonal term rewriting systems are confluent. In certain cases, the word normal is used to mean orthogonal, particularly in the geometric sense as in the normal to a surface.

  4. Rewriting - Wikipedia

    en.wikipedia.org/wiki/Rewriting

    A term rewriting given by a set of rules can be viewed as an abstract rewriting system as defined above, with terms as its objects and as its rewrite relation. For example, x ∗ ( y ∗ z ) → ( x ∗ y ) ∗ z {\displaystyle x*(y*z)\rightarrow (x*y)*z} is a rewrite rule, commonly used to establish a normal form with respect to the ...

  5. Orthogonality - Wikipedia

    en.wikipedia.org/wiki/Orthogonality

    The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").

  6. Confluence (abstract rewriting) - Wikipedia

    en.wikipedia.org/.../Confluence_(abstract_rewriting)

    A rewriting system may be locally confluent without being (globally) confluent. Examples are shown in figures 1 and 2. However, Newman's lemma states that if a locally confluent rewriting system has no infinite reduction sequences (in which case it is said to be terminating or strongly normalizing), then it is globally confluent.

  7. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    This definition can be formalized in Cartesian space by defining the dot product and specifying that two vectors in the plane are orthogonal if their dot product is zero. Similarly, the construction of the norm of a vector is motivated by a desire to extend the intuitive notion of the length of a vector to higher-dimensional spaces.

  8. Critical pair (term rewriting) - Wikipedia

    en.wikipedia.org/wiki/Critical_pair_(term_rewriting)

    A critical pair arises in a term rewriting system when two rewrite rules overlap to yield two different terms. In more detail, (t 1, t 2) is a critical pair if there is a term t for which two different applications of a rewrite rule (either the same rule applied differently, or two different rules) yield the terms t 1 and t 2.

  9. Rewrite order - Wikipedia

    en.wikipedia.org/wiki/Rewrite_order

    Conversely, for every terminating term rewriting system, the transitive closure of (::=) is a reduction ordering, [2] which need not be extendable to a ground-total one, however. For example, the ground term rewriting system { f ( a )::= f ( b ), g ( b )::= g ( a ) } is terminating, but can be shown so using a reduction ordering only if the ...