enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confounding - Wikipedia

    en.wikipedia.org/wiki/Confounding

    Depending on the type of study design in place, there are various ways to modify that design to actively exclude or control confounding variables: [26] Case-control studies assign confounders to both groups, cases and controls, equally. For example, if somebody wanted to study the cause of myocardial infarct and thinks that the age is a ...

  3. Control variable - Wikipedia

    en.wikipedia.org/wiki/Control_variable

    A variable in an experiment which is held constant in order to assess the relationship between multiple variables [a], is a control variable. [2] [3] A control variable is an element that is not changed throughout an experiment because its unchanging state allows better understanding of the relationship between the other variables being tested.

  4. Latent and observable variables - Wikipedia

    en.wikipedia.org/wiki/Latent_and_observable...

    A class of problems that naturally lend themselves to latent variables approaches are longitudinal studies where the time scale (e.g. age of participant or time since study baseline) is not synchronized with the trait being studied. For such studies, an unobserved time scale that is synchronized with the trait being studied can be modeled as a ...

  5. Spurious relationship - Wikipedia

    en.wikipedia.org/wiki/Spurious_relationship

    Graphical model: Whereas a mediator is a factor in the causal chain (top), a confounder is a spurious factor incorrectly implying causation (bottom). In statistics, a spurious relationship or spurious correlation [1] [2] is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third ...

  6. Bradford Hill criteria - Wikipedia

    en.wikipedia.org/wiki/Bradford_Hill_criteria

    Others argue that the specific study from which data has been produced is important, and while the Bradford Hill criteria may be applied to test causality in these scenarios, the study type may rule out deducing or inducing causality, and the criteria are only of use in inferring the best explanation of this data. [12]

  7. Quasi-experiment - Wikipedia

    en.wikipedia.org/wiki/Quasi-experiment

    A true experiment would, for example, randomly assign children to a scholarship, in order to control for all other variables. Quasi-experiments are commonly used in social sciences, public health, education, and policy analysis, especially when it is not practical or reasonable to randomize study participants to the treatment condition.

  8. Causal research - Wikipedia

    en.wikipedia.org/wiki/Causal_research

    Causal research, is the investigation of (research into) cause-relationships. [ 1 ] [ 2 ] [ 3 ] To determine causality, variation in the variable presumed to influence the difference in another variable(s) must be detected, and then the variations from the other variable(s) must be calculated (s).

  9. Risk factor - Wikipedia

    en.wikipedia.org/wiki/Risk_factor

    The potentially confounding determinants varies with what outcome is studied, but the following general confounders are common to most epidemiological associations, and are the determinants most commonly controlled for in epidemiological studies: [citation needed] Age (0 to 1.5 years for infants, 1.5 to 6 years for young children, etc.)