Search results
Results from the WOW.Com Content Network
The angular momentum of m is proportional to the perpendicular component v ⊥ of the velocity, or equivalently, to the perpendicular distance r ⊥ from the origin. Angular momentum is a vector quantity (more precisely, a pseudovector) that represents the product of a body's rotational inertia and rotational velocity (in radians/sec) about a ...
In an inertial frame of reference (subscripted "in"), Euler's second law states that the time derivative of the angular momentum L equals the applied torque: = For point particles such that the internal forces are central forces, this may be derived using Newton's second law.
The law of conservation of angular momentum states that in the absence of applied torques, the angular momentum vector is conserved in an inertial reference frame, so =. The angular momentum vector L {\displaystyle \mathbf {L} } can be expressed in terms of the moment of inertia tensor I {\displaystyle \mathbf {I} } and the angular velocity ...
A diagram of angular momentum. Showing angular velocity (Scalar) and radius. In physics, angular mechanics is a field of mechanics which studies rotational movement. It studies things such as angular momentum, angular velocity, and torque. It also studies more advanced things such as Coriolis force [1] and Angular aerodynamics.
Under a constant torque of magnitude τ, the speed of precession Ω P is inversely proportional to L, the magnitude of its angular momentum: = , where θ is the angle between the vectors Ω P and L. Thus, if the top's spin slows down (for example, due to friction), its angular momentum decreases and so the rate of precession increases.
Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]
When the center of mass is not coincident with the coordinate frame (that is, when c is nonzero), the translational and angular accelerations (a and α) are coupled, so that each is associated with force and torque components.
The balance of angular momentum or Euler's second law in classical mechanics is a law of physics, stating that to alter the angular momentum of a body a torque must be applied to it. An example of use is the playground merry-go-round in the picture.