Search results
Results from the WOW.Com Content Network
Copper(II) hydroxide is the hydroxide of copper with the chemical formula of Cu(OH) 2. It is a pale greenish blue or bluish green solid. It is a pale greenish blue or bluish green solid. Some forms of copper(II) hydroxide are sold as "stabilized" copper(II) hydroxide, although they likely consist of a mixture of copper(II) carbonate and hydroxide.
Copper(I) hydroxide would also be expect to easily oxidise to copper(II) hydroxide: 4CuOH + 2 H 2 O + O 2 → 4Cu(OH) 2. It would also be expected to rapidly dehydrate: 2CuOH → Cu 2 O + H 2 O. Solid CuOH would be of interest as a possible intermediate in the formation of copper(I) oxide (Cu 2 O), which has diverse applications.
Basic copper carbonate is a chemical compound, more properly called copper(II) carbonate hydroxide. It can be classified as a coordination polymer or a salt. It consists of copper(II) bonded to carbonate and hydroxide with formula Cu 2 (CO 3)(OH) 2. It is a green solid that occurs in nature as the mineral malachite.
Malachite, a common ore of copper is primarily copper carbonate hydroxide Cu 2 (CO 3)(OH) 2. [2] This mineral undergoes thermal decomposition to 2CuO, CO 2 , and H 2 O [ 3 ] in several stages between 250 °C and 350 °C.
In this type of decomposition reaction, a metal chloride and oxygen gas are the products. Here, again, M represents the metal: 2 MClO 3 → 2 MCl+ 3 O 2. A common decomposition of a chlorate is in the reaction of potassium chlorate where oxygen is the product. This can be written as: 2 KClO 3 → 2 KCl + 3 O 2
The chemical reaction is as follows: CaCO 3 → CaO + CO 2 The reaction is used to make quick lime, which is an industrially important product. Another example of thermal decomposition is 2Pb(NO 3) 2 → 2PbO + O 2 + 4NO 2. Some oxides, especially of weakly electropositive metals decompose when heated to high enough temperature.
A neutralization reaction is a type of double replacement reaction. A neutralization reaction occurs when an acid reacts with an equal amount of a base. This reaction usually produces a salt. One example, hydrochloric acid reacts with disodium iron tetracarbonyl to produce the iron dihydride: 2 HCl + Na 2 Fe(CO) 4 → 2 NaCl + H 2 Fe(CO) 4
Some copper proteins form oxo complexes, which also feature copper(III). [20] With tetrapeptides, purple-colored copper(III) complexes are stabilized by the deprotonated amide ligands. [21] Complexes of copper(III) are also found as intermediates in reactions of organocopper compounds. [22] For example, in the Kharasch–Sosnovsky reaction.