enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    Any real number can be written in the form m × 10 ^ n in many ways: for example, 350 can be written as 3.5 × 10 2 or 35 × 10 1 or 350 × 10 0. In normalized scientific notation (called "standard form" in the United Kingdom), the exponent n is chosen so that the absolute value of m remains at least one but less than ten ( 1 ≤ | m | < 10 ).

  3. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal to 0) is used.

  4. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    [nb 2] For instance rounding 9.46 to one decimal gives 9.5, and then 10 when rounding to integer using rounding half to even, but would give 9 when rounded to integer directly. Borman and Chatfield [ 15 ] discuss the implications of double rounding when comparing data rounded to one decimal place to specification limits expressed using integers.

  5. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    Likewise 0.0123 can be rewritten as 1.23 × 102. The part of the representation that contains the significant figures (1.30 or 1.23) is known as the significand or mantissa. The digits in the base and exponent (10 3 or 102) are considered exact numbers so for these digits, significant figures are irrelevant.

  6. Order of magnitude - Wikipedia

    en.wikipedia.org/wiki/Order_of_magnitude

    For a number written in scientific notation, this logarithmic rounding scale requires rounding up to the next power of ten when the multiplier is greater than the square root of ten (about 3.162). For example, the nearest order of magnitude for 1.7 × 10 8 is 8, whereas the nearest order of magnitude for 3.7 × 10 8 is 9.

  7. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    Zu Chongzhi is known to have computed π to be between 3.1415926 and 3.1415927, which was correct to seven decimal places. He also gave two other approximations of π : π ≈ 22 ⁄ 7 and π ≈ 355 ⁄ 113 , which are not as accurate as his decimal result.

  8. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For numbers with a base-2 exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly 2 −23 or about 10 −7 in single precision, and exactly 2 −53 or about 10 −16 in double precision. The mandated behavior of IEEE-compliant hardware is that the result be within one-half of a ULP.

  9. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    A straightforward decimal rank system with a word for each order (10 十, 100 百, 1000 千, 10,000 万), and in which 11 is expressed as ten-one and 23 as two-ten-three, and 89,345 is expressed as 8 (ten thousands) 万 9 (thousand) 千 3 (hundred) 百 4 (tens) 十 5 is found in Chinese, and in Vietnamese with a few irregularities.