Ad
related to: math problems that haven't been solved by finding the area formulakutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time), an algorithm can also find that solution quickly. Since the former describes the class of problems termed NP, while the latter describes P, the question is equivalent to asking whether all problems in NP are ...
Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer.
When we recently wrote about the toughest math problems that have been solved, we mentioned one of the greatest achievements in 20th-century math: the solution to Fermat’s Last Theorem. Sir ...
Hilbert's sixteenth problem about the finiteness of the number of limit cycles of a plane polynomial vector field. Henri Dulac published a partial solution to this problem in 1923, but in about 1980 Écalle and Ilyashenko independently found a serious gap, and fixed it in about 1991. [7]
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.
For premium support please call: 800-290-4726 more ways to reach us
Ad
related to: math problems that haven't been solved by finding the area formulakutasoftware.com has been visited by 10K+ users in the past month