Search results
Results from the WOW.Com Content Network
In fluid dynamics, the Kirchhoff equations, named after Gustav Kirchhoff, describe the motion of a rigid body in an ideal fluid. = + + +, = + +, = (~ +) = ^, = ^ where and are the angular and linear velocity vectors at the point , respectively; ~ is the moment of inertia tensor, is the body's mass; ^ is a unit normal vector to the surface of the body at the point ; is a pressure at this point ...
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph
The Kirchhoff-Love constitutive assumptions lead to zero shear forces. As a result, the equilibrium equations for the plate have to be used to determine the shear forces in thin Kirchhoff-Love plates. For isotropic plates, these equations lead to
Gustav Robert Kirchhoff (German: [ˈgʊs.taf ˈkɪʁçhɔf]; 12 March 1824 – 17 October 1887) was a German physicist, chemist and mathematican who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.
Mesh analysis and loop analysis both make systematic use of Kirchhoff’s voltage law to arrive at a set of equations guaranteed to be solvable if the circuit has a solution. [1] Mesh analysis is usually easier to use when the circuit is planar, compared to loop analysis.
The most commonly used are the Kirchhoff-Love theory [2] and the Uflyand-Mindlin. [3] [4] The latter theory is discussed in detail by Elishakoff. [5] Solutions to the governing equations predicted by these theories can give us insight into the behavior of plate-like objects both under free and forced conditions. This includes the propagation of ...
In the Kirchhoff–Love plate theory for plates the governing equations are [1], = and , = In expanded form, + = ; + = and + + = where () is an applied transverse load per unit area, the thickness of the plate is =, the stresses are , and