Search results
Results from the WOW.Com Content Network
Hansen solubility parameters were developed by Charles M. Hansen in his Ph.D thesis in 1967 [1] [2] as a way of predicting if one material will dissolve in another and form a solution. [3] They are based on the idea that like dissolves like where one molecule is defined as being 'like' another if it bonds to itself in a similar way.
In addition to over 130 published papers and 8 patents (h-index 25), he authored Hansen Solubility Parameters – A User's Handbook in 1999 followed by an expanded 2nd Edition in 2007. [6] With Abbott and Yamamoto he authored the package of software, eBook, and datasets called Hansen Solubility Parameters in Practice, in 2008 which is currently ...
The Hansen solubility parameter (HSP) values [14] [15] are based on dispersion bonds (δD), polar bonds (δP) and hydrogen bonds (δH). These contain information about the inter-molecular interactions with other solvents and also with polymers, pigments, nanoparticles, etc. This allows for rational formulations knowing, for example, that there ...
Solubility parameter may refer to parameters of solubility: Hildebrand solubility parameter, a numerical estimate of the degree of interaction between materials, and can be a good indication of solubility; Hansen solubility parameters, developed by Charles Hansen as a way of predicting if one material will dissolve in another and form a solution
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
His 1924 monograph on the solubility of non-electrolytes, Solubility, was the classic reference for almost half a century. In 1927, Hildebrand coined the term "regular solution" (to be contrasted with "ideal solution") and discussed their thermodynamic aspects in 1929. A regular solution is one involving no entropy change when a small amount of ...
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
Complete solubility occurs when the solvent and solute have the same valency. [2] A metal is more likely to dissolve a metal of higher valency, than vice versa. [1] [3] [4] The solute and solvent should have similar electronegativity.