enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy conversion efficiency - Wikipedia

    en.wikipedia.org/wiki/Energy_conversion_efficiency

    A Sankey diagram showing the multiple stages of energy loss between the wall plug and the light output of a fluorescent lamp. The greatest losses occur due to the Stokes shift. In optical systems such as lighting and lasers, the energy conversion efficiency is often referred to as wall-plug efficiency.

  3. Thermal efficiency - Wikipedia

    en.wikipedia.org/wiki/Thermal_efficiency

    So the energy lost to the environment by heat engines is a major waste of energy resources. Since a large fraction of the fuels produced worldwide go to powering heat engines, perhaps up to half of the useful energy produced worldwide is wasted in engine inefficiency, although modern cogeneration , combined cycle and energy recycling schemes ...

  4. Losses in electrical systems - Wikipedia

    en.wikipedia.org/wiki/Losses_in_electrical_systems

    In an electrical or electronic circuit or power system part of the energy in play is dissipated by unwanted effects, including energy lost by unwanted heating of resistive components (electricity is also used for the intention of heating, which is not a loss), the effect of parasitic elements (resistance, capacitance, and inductance), skin effect, losses in the windings and cores of ...

  5. Dielectric loss - Wikipedia

    en.wikipedia.org/wiki/Dielectric_loss

    In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy (e.g. heat). [1] It can be parameterized in terms of either the loss angle δ or the corresponding loss tangent tan( δ ) .

  6. Borda–Carnot equation - Wikipedia

    en.wikipedia.org/wiki/Borda–Carnot_equation

    ΔE is the fluid's mechanical energy loss, ξ is an empirical loss coefficient, which is dimensionless and has a value between zero and one, 0 ≤ ξ ≤ 1, ρ is the fluid density, v 1 and v 2 are the mean flow velocities before and after the expansion. In case of an abrupt and wide expansion, the loss coefficient is equal to one. [1]

  7. Stopping power (particle radiation) - Wikipedia

    en.wikipedia.org/wiki/Stopping_power_(particle...

    In nuclear and materials physics, stopping power is the retarding force acting on charged particles, typically alpha and beta particles, due to interaction with matter, resulting in loss of particle kinetic energy. [1] [2] Stopping power is also interpreted as the rate at which a material absorbs the kinetic energy of a charged particle.

  8. Copper loss - Wikipedia

    en.wikipedia.org/wiki/Copper_loss

    Copper loss is the term often given to heat produced by electrical currents in the conductors of transformer windings, or other electrical devices. Copper losses are an undesirable transfer of energy , as are core losses , which result from induced currents in adjacent components.

  9. Bethe formula - Wikipedia

    en.wikipedia.org/wiki/Bethe_formula

    The interaction excites or ionizes the atoms, leading to an energy loss of the traveling particle. The non-relativistic version was found by Hans Bethe in 1930; the relativistic version (shown below) was found by him in 1932. [2] The most probable energy loss differs from the mean energy loss and is described by the Landau-Vavilov distribution. [3]