enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The refractive index of materials varies with the wavelength (and frequency) of light. [27] This is called dispersion and causes prisms and rainbows to divide white light into its constituent spectral colors. [28] As the refractive index varies with wavelength, so will the refraction angle as light goes from one material to another.

  3. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    It deviates in the ultraviolet and infrared regions. In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy, who originally defined it in 1830 in his article "The refraction and ...

  4. Sellmeier equation - Wikipedia

    en.wikipedia.org/wiki/Sellmeier_equation

    The Sellmeier equation is an empirical relationship between refractive index and wavelength for a particular transparent medium. The equation is used to determine the dispersion of light in the medium. It was first proposed in 1872 by Wolfgang Sellmeier and was a development of the work of Augustin Cauchy on Cauchy's equation for modelling ...

  5. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Snell's law. Refraction of light at the interface between two media of different refractive indices, with n 2 > n 1. Since the velocity is lower in the second medium (v 2 < v 1), the angle of refraction θ 2 is less than the angle of incidence θ 1; that is, the ray in the higher-index medium is closer to the normal.

  6. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    Separation occurs when the refractive index inside the prism varies with wavelength, so different wavelengths propagate at different speeds inside the prism, causing them to refract at different angles. The mathematical relationship that describes how the speed of light within a medium varies with wavelength is known as a dispersion relation.

  7. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    Fresnel equations. Partial transmission and reflection of a pulse travelling from a low to a high refractive index medium. At near-grazing incidence, media interfaces appear mirror-like especially due to reflection of the s polarization, despite being poor reflectors at normal incidence. Polarized sunglasses block the s polarization, greatly ...

  8. Optical properties of water and ice - Wikipedia

    en.wikipedia.org/wiki/Optical_properties_of...

    The refractive index of water at 20 °C for visible light is 1.33. [1] The refractive index of normal ice is 1.31 (from List of refractive indices). In general, an index of refraction is a complex number with real and imaginary parts, where the latter indicates the strength of absorption loss at a particular wavelength.

  9. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of ...