enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line search - Wikipedia

    en.wikipedia.org/wiki/Line_search

    Line search. In optimization, line search is a basic iterative approach to find a local minimum of an objective function . It first finds a descent direction along which the objective function will be reduced, and then computes a step size that determines how far should move along that direction. The descent direction can be computed by various ...

  3. Learning rate - Wikipedia

    en.wikipedia.org/wiki/Learning_rate

    v. t. e. In machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. [1] Since it influences to what extent newly acquired information overrides old information, it metaphorically represents the speed at ...

  4. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods. The novelty of Fehlberg's method is that it is an ...

  5. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent is a method for unconstrained mathematical optimization. It is a first-order iterative algorithm for minimizing a differentiable multivariate function. The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of ...

  6. Adaptive step size - Wikipedia

    en.wikipedia.org/wiki/Adaptive_step_size

    Adaptive step size. In mathematics and numerical analysis, an adaptive step size is used in some methods for the numerical solution of ordinary differential equations (including the special case of numerical integration) in order to control the errors of the method and to ensure stability properties such as A-stability.

  7. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    The step size is denoted by (sometimes called the learning rate in machine learning) and here ":=" denotes the update of a variable in the algorithm. In many cases, the summand functions have a simple form that enables inexpensive evaluations of the sum-function and the sum gradient.

  8. Quantization (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Quantization_(signal...

    where is a reconstruction offset value in the range of 0 to 1 as a fraction of the step size. Ordinarily, 0 ≤ r k ≤ 1 2 {\displaystyle 0\leq r_{k}\leq {\tfrac {1}{2}}} when quantizing input data with a typical probability density function (PDF) that is symmetric around zero and reaches its peak value at zero (such as a Gaussian , Laplacian ...

  9. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    In numerical analysis, the Runge–Kutta methods (English: / ˈrʊŋəˈkʊtɑː / ⓘ RUUNG-ə-KUUT-tah[1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]