Search results
Results from the WOW.Com Content Network
Pinacol is a branched alcohol which finds use in organic syntheses. It is a diol that has hydroxyl groups on vicinal carbon atoms. A white solid that melts just above room temperature, pinacol is notable for undergoing the pinacol rearrangement in the presence of acid and for being the namesake of the pinacol coupling reaction.
Most famously, at least in the classroom, pinacolone arises by the pinacol rearrangement, which occurs by protonation of pinacol (2,3-dimethylbutane-2,3-diol). [4] Industrially pinacolone is made by the hydrolysis of 4,4,5-trimethyl-1,3-dioxane, which is the product of isoprene and formaldehyde via the Prins reaction.
2,3-Dimethylbutane is an isomer of hexane. It has the chemical formula (CH 3) 2 CHCH(CH 3) 2. It is a colorless liquid which boils at 57.9 °C. References
[2] [5] The compound is used as a reactant in the synthesis of a number of compounds. Notably it is used to synthesize 2,3-dimethylbut-2-ene, and is then converted to 2,3-dimethylbutane-2,3-diol and methyl tert-butyl ketone, better known as pinacolone. Pinacolone itself is then used in synthesis for number of pesticides.
If there are multiple functional groups of the same type, either prefixed or suffixed, the position numbers are ordered numerically (thus ethane-1,2-diol, not ethane-2,1-diol.) The N position indicator for amines and amides comes before "1", e.g., CH 3 CH(CH 3)CH 2 NH(CH 3) is N,2-dimethylpropanamine.
[1] The general chemical formula of the halogen addition reaction is: C=C + X 2 → X−C−C−X (X represents the halogens bromine or chlorine, and in this case, a solvent could be CH 2 Cl 2 or CCl 4). The product is a vicinal dihalide. This type of reaction is a halogenation and an electrophilic addition.
Pinacolyl alcohol (also known as 3,3-dimethylbutan-2-ol and as pine alcohol) is one of the isomeric hexanols and a secondary alcohol. Pinacolyl alcohol appears on the List of Schedule 2 substances of the Chemical Weapons Convention as a precursor for the nerve agent soman .
In Figure 6, 2-chloro-2,3-dimethylbutane is stabilized through hyperconjugation from electron donation from σ C-H into σ* C-Cl, but both C–H and C–Cl bonds are weakened. A molecular orbital diagram shows that the mixing of σ C–H and σ* C–Cl in 2-chloro-2,3-dimethylbutane lowers the energy of both the orbitals (Figure 7).