Search results
Results from the WOW.Com Content Network
Flux (also known as FLUX.1) is a text-to-image model developed by Black Forest Labs, based in Freiburg im Breisgau, Germany. Black Forest Labs were founded by former employees of Stability AI. As with other text-to-image models, Flux generates images from natural language descriptions, called prompts.
AUTOMATIC1111 Stable Diffusion Web UI (SD WebUI, A1111, or Automatic1111 [3]) is an open source generative artificial intelligence program that allows users to generate images from a text prompt. [4] It uses Stable Diffusion as the base model for its image capabilities together with a large set of extensions and features to customize its output.
An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.
Stable Diffusion is a deep learning, text-to-image model released in 2022 based on diffusion techniques. The generative artificial intelligence technology is the premier product of Stability AI and is considered to be a part of the ongoing artificial intelligence boom.
According to OpenAI, Sora is a diffusion transformer [10] – a denoising latent diffusion model with one Transformer as the denoiser. A video is generated in latent space by denoising 3D "patches", then transformed to standard space by a video decompressor.
The architecture of vision transformer. An input image is divided into patches, each of which is linearly mapped through a patch embedding layer, before entering a standard Transformer encoder. A vision transformer (ViT) is a transformer designed for computer vision. [1]
Each image is a point in the space of all images, and the distribution of naturally-occurring photos is a "cloud" in space, which, by repeatedly adding noise to the images, diffuses out to the rest of the image space, until the cloud becomes all but indistinguishable from a Gaussian distribution (,). A model that can approximately undo the ...
The generator is decomposed into a pyramid of generators =, with the lowest one generating the image () at the lowest resolution, then the generated image is scaled up to (()), and fed to the next level to generate an image (+ (())) at a higher resolution, and so on. The discriminator is decomposed into a pyramid as well.