enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.

  3. Combination - Wikipedia

    en.wikipedia.org/wiki/Combination

    The number of such strings is the number of ways to place 10 stars in 13 positions, () = =, which is the number of 10-multisubsets of a set with 4 elements. Bijection between 3-subsets of a 7-set (left) and 3-multisets with elements from a 5-set (right).

  4. Combinatorial number system - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_number_system

    Suppose one wants to determine the 5-combination at position 72. The successive values of () for n = 4, 5, 6, ... are 0, 1, 6, 21, 56, 126, 252, ..., of which the largest one not exceeding 72 is 56, for n = 8. Therefore c 5 = 8, and the remaining elements form the 4-combination at position 72 − 56 = 16. The successive values of () for n = 3 ...

  5. Combinations and permutations - Wikipedia

    en.wikipedia.org/wiki/Combinations_and_permutations

    Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...

  6. Composition (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Composition_(combinatorics)

    For example the five compositions of 5 into distinct terms are: 5; 4 + 1; 3 + 2; 2 + 3; 1 + 4. Compare this with the three partitions of 5 into distinct terms: 5; 4 + 1; 3 + 2. Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth ...

  7. Combinatorics - Wikipedia

    en.wikipedia.org/wiki/Combinatorics

    Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.

  8. Combinatorial design - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_design

    Combinatorial designs date to antiquity, with the Lo Shu Square being an early magic square.One of the earliest datable application of combinatorial design is found in India in the book Brhat Samhita by Varahamihira, written around 587 AD, for the purpose of making perfumes using 4 substances selected from 16 different substances using a magic square.

  9. Rencontres numbers - Wikipedia

    en.wikipedia.org/wiki/Rencontres_numbers

    For n ≥ 0 and 0 ≤ k ≤ n, the rencontres number D n, k is the number of permutations of { 1, ..., n } that have exactly k fixed points. For example, if seven presents are given to seven different people, but only two are destined to get the right present, there are D 7, 2 = 924 ways this could happen.