Search results
Results from the WOW.Com Content Network
The Lagrangian is thus a function on the jet bundle J over E; taking the fiberwise Legendre transform of the Lagrangian produces a function on the dual bundle over time whose fiber at t is the cotangent space T ∗ E t, which comes equipped with a natural symplectic form, and this latter function is the Hamiltonian. The correspondence between ...
The coordinates q do not have to be cyclic, the partition between which coordinates enter the Hamiltonian equations and those which enter the Lagrangian equations is arbitrary. It is simply convenient to let the Hamiltonian equations remove the cyclic coordinates, leaving the non cyclic coordinates to the Lagrangian equations of motion.
It can be understood as an instantaneous increment of the Lagrangian expression of the problem that is to be optimized over a certain time period. [1] Inspired by—but distinct from—the Hamiltonian of classical mechanics, the Hamiltonian of optimal control theory was developed by Lev Pontryagin as part of his maximum principle. [2]
The Hamiltonian is defined by = = ˙ ˙ and can be obtained by performing a Legendre transformation on the Lagrangian, which introduces new variables canonically conjugate to the original variables. For example, given a set of generalized coordinates, the variables canonically conjugate are the generalized momenta.
Analytical mechanics, or reformulations of Newton's laws of motion, most notably Lagrangian and Hamiltonian mechanics; Geometric optics, especially Lagrangian and Hamiltonian optics; Variational method (quantum mechanics), one way of finding approximations to the lowest energy eigenstate or ground state, and some excited states;
The difference between the Lagrangian, Hamiltonian, and Routhian functions are their variables. For a given set of generalized coordinates representing the degrees of freedom in the system, the Lagrangian is a function of the coordinates and velocities, while the Hamiltonian is a function of the coordinates and momenta.
A Lagrangian density L (or, simply, a Lagrangian) of order r is defined as an n-form, n = dim X, on the r-order jet manifold J r Y of Y. A Lagrangian L can be introduced as an element of the variational bicomplex of the differential graded algebra O ∗ ∞ ( Y ) of exterior forms on jet manifolds of Y → X .
Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.