Search results
Results from the WOW.Com Content Network
Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail
ρ p is the mass density of the sphere [kg/m 3] ρ f is the mass density of the fluid [kg/m 3] g is the gravitational acceleration [m/s 2] Requiring the force balance F d = F e and solving for the velocity v gives the terminal velocity v s.
where is the relaxation time of the particle (the time constant in the exponential decay of the particle velocity due to drag), is the fluid velocity of the flow well away from the obstacle, and is the characteristic dimension of the obstacle (typically its diameter) or a characteristic length scale in the flow (like boundary layer thickness). [1]
Underdamped spring–mass system with ζ < 1. In physical systems, damping is the loss of energy of an oscillating system by dissipation. [1] [2] Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. [3]
As an example of this formula, if Δ = 1/e 4 = 1.8 %, the settling time condition is t S = 8 τ 2. In general, control of overshoot sets the time constant ratio, and settling time t S sets τ 2 . [ 5 ] [ 6 ] [ 7 ]
First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.
The Cambridge Handbook of Physics Formulas, G. Woan, Cambridge University Press, 2010, ISBN 978-0-521-57507-2. An Introduction to Mechanics, D. Kleppner, R.J. Kolenkow, Cambridge University Press, 2010, ISBN 978-0-521-19821-9
Calculate (by direct time-domain simulation) the maximum instantaneous absolute acceleration experienced by the mass element of your SDOF at any time during (or after) exposure to the shock in question. This acceleration is a; Draw a dot at (f,a); Repeat steps 2–4 for many other values of f, and connect all the dots together into a smooth curve.