Search results
Results from the WOW.Com Content Network
Calcium peroxide or calcium dioxide is the inorganic compound with the formula CaO 2. It is the peroxide (O 2 2−) salt of Ca 2+. Commercial samples can be yellowish, but the pure compound is white. It is almost insoluble in water. [3]
The oxygen-evolving complex is the site of water oxidation. It is a metallo-oxo cluster comprising four manganese ions (in oxidation states ranging from +3 to +4) [ 6 ] and one divalent calcium ion. When it oxidizes water, producing oxygen gas and protons, it sequentially delivers the four electrons from water to a tyrosine (D1-Y161) sidechain ...
The two metal ions in this binuclear center are 4.5 Å apart and coordinate a hydroxide ion in the fully oxidized state. Crystallographic studies of cytochrome c oxidase show an unusual post-translational modification, linking C6 of Tyr(244) and the ε-N of His(240) (bovine enzyme numbering).
The number indicates the degree of oxidation of each element caused by molecular bonding. In ionic compounds, the oxidation numbers are the same as the element's ionic charge. Thus for KCl, potassium is assigned +1 and chlorine is assigned -1. [4] The complete set of rules for assigning oxidation numbers are discussed in the following sections.
Condensation of chromatin is a vital step in cell division, allowing cells to equally distribute chromosomes to the daughter cells. Recent work has suggested that Ca 2+ is required for enabling chromatin condensation in prometaphase. Calcium was found to concentrate on condensed DNA to much higher levels compared to normal cytosolic calcium ...
Calcium oxide (formula: Ca O), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic , alkaline , crystalline solid at room temperature . The broadly used term lime connotes calcium-containing inorganic compounds , in which carbonates , oxides , and hydroxides of calcium, silicon , magnesium ...
When an oxidizer (Ox) accepts a number z of electrons ( e −) to be converted in its reduced form (Red), the half-reaction is expressed as: Ox + z e − → Red. The reaction quotient (Q r) is the ratio of the chemical activity (a i) of the reduced form (the reductant, a Red) to the activity of the oxidized form (the oxidant, a ox).
Oxidative phosphorylation (UK / ɒ k ˈ s ɪ d. ə. t ɪ v /, US / ˈ ɑː k. s ɪ ˌ d eɪ. t ɪ v / [1]) or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP).