Ad
related to: corresponding angles converse theorem definition math example problems
Search results
Results from the WOW.Com Content Network
The corresponding angles as well as the corresponding sides are defined as appearing in the same sequence, so for example if in a polygon with the side sequence abcde and another with the corresponding side sequence vwxyz we have vertex angle a appearing between sides a and b then its corresponding vertex angle v must appear between sides v and w.
Other examples are doubling the cube and trisecting the angle. Two polyhedra are called scissors-congruent if the first can be cut into finitely many polyhedral pieces that can be reassembled to yield the second. Any two scissors-congruent polyhedra have the same volume. Hilbert asks about the converse.
In the mathematical theory of automorphic forms, a converse theorem gives sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. More generally a converse theorem states that a representation of an algebraic group over the adeles is automorphic whenever the L-functions of various twists of it are well-behaved.
Corresponding angles are the four pairs of angles that: have distinct vertex points, lie on the same side of the transversal and; one angle is interior and the other is exterior. Two lines are parallel if and only if the two angles of any pair of corresponding angles of any transversal are congruent (equal in measure).
For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context. That is, the converse of "Given P, if Q then R" will be "Given P, if R then Q".
This is known as the AAA similarity theorem. [2] Note that the "AAA" is a mnemonic: each one of the three A's refers to an "angle". Due to this theorem, several authors simplify the definition of similar triangles to only require that the corresponding three angles are congruent. [3]
Using the usual notations for a triangle (see the figure at the upper right), where a, b, c are the lengths of the three sides, A, B, C are the vertices opposite those three respective sides, α, β, γ are the corresponding angles at those vertices, s is the semiperimeter, that is, s = a + b + c / 2 , and r is the radius of the inscribed circle, the law of cotangents states that
The sum of the angles is the same for every triangle. There exists a pair of similar, but not congruent, triangles. Every triangle can be circumscribed. If three angles of a quadrilateral are right angles, then the fourth angle is also a right angle. There exists a quadrilateral in which all angles are right angles, that is, a rectangle.
Ad
related to: corresponding angles converse theorem definition math example problems