Search results
Results from the WOW.Com Content Network
Pulsus bisferiens, also known as biphasic pulse, is an aortic waveform with two peaks per cardiac cycle, a small one followed by a strong and broad one. [1] It is a sign of problems with the aorta, including aortic stenosis and aortic regurgitation, as well as hypertrophic cardiomyopathy causing subaortic stenosis.
Wiggers diagram with mechanical (echo), electrical (ECG), and aortic pressure (catheter) waveforms, together with an in-ear dynamic pressure waveform measured using a novel infrasonic hemodynography technology, for a patient with severe aortic stenosis.
Arterial waveform. Pulsus alternans is diagnosed by first palpating the radial or femoral arteries, feeling for a regular rhythm but alternating strong and weak pulses. Next, a blood pressure cuff is used to confirm the finding: the cuff is elevated past systolic pressure and then slowly lowered cuff towards the systolic level.
The closure of the aortic valve causes a rapid change in pressure in the aorta called the incisura. This short sharp change in pressure is rapidly attenuated down the arterial tree. The pulse wave form is also reflected from branches in the arterial tree and gives rise to a dicrotic notch in main arteries.
The theory of the velocity of the transmission of the pulse through the circulation dates back to 1808 with the work of Thomas Young. [9] The relationship between pulse wave velocity (PWV) and arterial wall stiffness can be derived from Newton's second law of motion (=) applied to a small fluid element, where the force on the element equals the product of density (the mass per unit volume ...
Illustration of an arterial catheter inserted in the left radial artery and covered with a dressing Arterial catheter (Seldinger technique) Arterial catheter (Punktion technique) An arterial line (also art-line or a-line ) is a thin catheter inserted into an artery .
In medicine, the mean arterial pressure (MAP) is an average calculated blood pressure in an individual during a single cardiac cycle. [1] Although methods of estimating MAP vary, a common calculation is to take one-third of the pulse pressure (the difference between the systolic and diastolic pressures), and add that amount to the diastolic pressure.
The Windkessel analogy illustrated. Windkessel effect (German: Windkesseleffekt) is a term used in medicine to account for the shape of the arterial blood pressure waveform in terms of the interaction between the stroke volume and the compliance of the aorta and large elastic arteries (Windkessel vessels) and the resistance of the smaller arteries and arterioles.