enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths. The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band.

  3. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    Diagram illustrating the relationship between the wavenumber and the other properties of harmonic waves. In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave, measured in cycles per unit distance (ordinary wavenumber) or radians per unit distance (angular wavenumber).

  4. Schumann resonances - Wikipedia

    en.wikipedia.org/wiki/Schumann_resonances

    The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.

  5. Visible spectrum - Wikipedia

    en.wikipedia.org/wiki/Visible_spectrum

    The visible spectrum is the band of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called visible light (or simply light). The optical spectrum is sometimes considered to be the same as the visible spectrum, but some authors define the term more broadly, to include the ...

  6. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    The wavelength (or alternatively wavenumber or wave vector) is a characterization of the wave in space, that is functionally related to its frequency, as constrained by the physics of the system. Sinusoids are the simplest traveling wave solutions, and more complex solutions can be built up by superposition.

  7. Wavenumber–frequency diagram - Wikipedia

    en.wikipedia.org/wiki/Wavenumber–frequency_diagram

    Wavenumber–frequency diagram. A wavenumber–frequency diagram is a plot displaying the relationship between the wavenumber (spatial frequency) and the frequency (temporal frequency) of certain phenomena. Usually frequencies are placed on the vertical axis, while wavenumbers are placed on the horizontal axis. [1][2]

  8. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    The simplest approach is to focus on the description in terms of plane matter waves for a free particle, that is a wave function described by =, where is a position in real space, is the wave vector in units of inverse meters, ω is the angular frequency with units of inverse time and is time.

  9. Envelope (waves) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(waves)

    A modulated wave resulting from adding two sine waves of identical amplitude and nearly identical wavelength and frequency. A common situation resulting in an envelope function in both space x and time t is the superposition of two waves of almost the same wavelength and frequency: [2] which uses the trigonometric formula for the addition of ...