Search results
Results from the WOW.Com Content Network
Kruskal's algorithm. Kruskal's algorithm[1] finds a minimum spanning forest of an undirected edge-weighted graph. If the graph is connected, it finds a minimum spanning tree. It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2] The key steps of the algorithm are sorting and the use ...
In each step, T is augmented with a least-weight edge (x,y) such that x is in T and y is not yet in T. By the Cut property, all edges added to T are in the MST. Its run-time is either O(m log n) or O(m + n log n), depending on the data-structures used. A third algorithm commonly in use is Kruskal's algorithm, which also takes O(m log n) time.
For example, Kruskal's algorithm processes edges in turn, deciding whether to include the edge in the MST based on whether it would form a cycle with all previously chosen edges. Both Prim's algorithm and Kruskal's algorithm require processes to know the state of the whole graph, which is very difficult to discover in the message-passing model.
Maze generation animation using a tessellation algorithm. This is a simple and fast way to generate a maze. [3] On each iteration, this algorithm creates a maze twice the size by copying itself 3 times. At the end of each iteration, 3 paths are opened between the 4 smaller mazes.
Parallel algorithms for minimum spanning trees. In graph theory a minimum spanning tree (MST) of a graph with and is a tree subgraph of that contains all of its vertices and is of minimum weight. MSTs are useful and versatile tools utilised in a wide variety of practical and theoretical fields. For example, a company looking to supply multiple ...
Reverse-delete algorithm. The reverse-delete algorithm is an algorithm in graph theory used to obtain a minimum spanning tree from a given connected, edge-weighted graph. It first appeared in Kruskal (1956), but it should not be confused with Kruskal's algorithm which appears in the same paper. If the graph is disconnected, this algorithm will ...
The Steiner point S is located at the Fermat point of the triangle ABC. In combinatorial mathematics, the Steiner tree problem, or minimum Steiner tree problem, named after Jakob Steiner, is an umbrella term for a class of problems in combinatorial optimization. While Steiner tree problems may be formulated in a number of settings, they all ...
Greedy algorithms determine the minimum number of coins to give while making change. These are the steps most people would take to emulate a greedy algorithm to represent 36 cents using only coins with values {1, 5, 10, 20}. The coin of the highest value, less than the remaining change owed, is the local optimum.