enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]

  3. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ + ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  4. Zero matrix - Wikipedia

    en.wikipedia.org/wiki/Zero_matrix

    In mathematics, particularly linear algebra, a zero matrix or null matrix is a matrix all of whose entries are zero. It also serves as the additive identity of the additive group of m × n {\displaystyle m\times n} matrices, and is denoted by the symbol O {\displaystyle O} or 0 {\displaystyle 0} followed by subscripts corresponding to the ...

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    If a matrix A can be eigendecomposed and if none of its eigenvalues are zero, then A is invertible and its inverse is given by = If is a symmetric matrix, since is formed from the eigenvectors of , is guaranteed to be an orthogonal matrix, therefore =.

  6. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A square matrix having a multiplicative inverse, that is, a matrix B such that AB = BA = I. Invertible matrices form the general linear group. Involutory matrix: A square matrix which is its own inverse, i.e., AA = I. Signature matrices, Householder matrices (Also known as 'reflection matrices' to reflect a point about a plane or line) have ...

  7. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    If the determinant of is zero, it is impossible for it to have a one-sided inverse; therefore a left inverse or right inverse implies the existence of the other one. See invertible matrix for more. More generally, a square matrix over a commutative ring R {\displaystyle R} is invertible if and only if its determinant is invertible in R ...

  8. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    A matrix with entries in a field is invertible precisely if its determinant is nonzero. This follows from the multiplicativity of the determinant and the formula for the inverse involving the adjugate matrix mentioned below. In this event, the determinant of the inverse matrix is given by

  9. Integer matrix - Wikipedia

    en.wikipedia.org/wiki/Integer_matrix

    Theorems from matrix theory that infer properties from determinants thus avoid the traps induced by ill conditioned (nearly zero determinant) real or floating point valued matrices. The inverse of an integer matrix M {\displaystyle M} is again an integer matrix if and only if the determinant of M {\displaystyle M} equals 1 {\displaystyle 1} or ...