Search results
Results from the WOW.Com Content Network
If the multiplication is associative, an element x with a multiplicative inverse cannot be a zero divisor (x is a zero divisor if some nonzero y, xy = 0). To see this, it is sufficient to multiply the equation xy = 0 by the inverse of x (on the left), and then simplify using associativity.
The element 0 in the zero ring is a unit, serving as its own multiplicative inverse. The unit group of the zero ring is the trivial group {0}. The element 0 in the zero ring is not a zero divisor. The only ideal in the zero ring is the zero ideal {0}, which is
The inverse or multiplicative inverse (for avoiding confusion with additive inverses) of a unit x is denoted , or, when the multiplication is commutative, . The additive identity 0 is never a unit, except when the ring is the zero ring , which has 0 as its unique element.
The multiplicative identity 1 and its additive inverse −1 are always units. More generally, any root of unity in a ring R is a unit: if r n = 1, then r n−1 is a multiplicative inverse of r. In a nonzero ring, the element 0 is not a unit, so R × is not closed under addition.
A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.
Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...
This is always the case if R is a field, and S is not the zero ring. Since ker f contains the multiplicative identity only when S is the zero ring, it turns out that the kernel is generally not a subring of R. The kernel is a subrng, and, more precisely, a two-sided ideal of R. Thus, it makes sense to speak of the quotient ring R / (ker f).
The reciprocal function f(x) = x −1 where for every x except 0, f(x) represents its multiplicative inverse. Exponentiation of a non‐zero real number can be extended to negative integers, where raising a number to the power −1 has the same effect as taking its multiplicative inverse: x −1 = 1 / x .