enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    If the multiplication is associative, an element x with a multiplicative inverse cannot be a zero divisor (x is a zero divisor if some nonzero y, xy = 0). To see this, it is sufficient to multiply the equation xy = 0 by the inverse of x (on the left), and then simplify using associativity.

  3. Zero ring - Wikipedia

    en.wikipedia.org/wiki/Zero_ring

    The element 0 in the zero ring is a unit, serving as its own multiplicative inverse. The unit group of the zero ring is the trivial group {0}. The element 0 in the zero ring is not a zero divisor. The only ideal in the zero ring is the zero ideal {0}, which is

  4. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    The inverse or multiplicative inverse (for avoiding confusion with additive inverses) of a unit x is denoted , or, when the multiplication is commutative, . The additive identity 0 is never a unit, except when the ring is the zero ring , which has 0 as its unique element.

  5. Unit (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Unit_(ring_theory)

    The multiplicative identity 1 and its additive inverse −1 are always units. More generally, any root of unity in a ring R is a unit: if r n = 1, then r n−1 is a multiplicative inverse of r. In a nonzero ring, the element 0 is not a unit, so R × is not closed under addition.

  6. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.

  7. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...

  8. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    This is always the case if R is a field, and S is not the zero ring. Since ker f contains the multiplicative identity only when S is the zero ring, it turns out that the kernel is generally not a subring of R. The kernel is a subrng, and, more precisely, a two-sided ideal of R. Thus, it makes sense to speak of the quotient ring R / (ker f).

  9. −1 - Wikipedia

    en.wikipedia.org/wiki/%E2%88%921

    The reciprocal function f(x) = x −1 where for every x except 0, f(x) represents its multiplicative inverse. Exponentiation of a non‐zero real number can be extended to negative integers, where raising a number to the power −1 has the same effect as taking its multiplicative inverse: x −1 = ⁠ 1 / x ⁠.