enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]

  3. Cairo pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Cairo_pentagonal_tiling

    The regular pentagon cannot form Cairo tilings, as it does not tile the plane without gaps. There is a unique equilateral pentagon that can form a type 4 Cairo tiling; it has five equal sides but its angles are unequal, and its tiling is bilaterally symmetric. [4] [13] Infinitely many other equilateral pentagons can form type 2 Cairo tilings. [4]

  4. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t {3,6} (as a truncated triangular tiling).

  5. Aperiodic set of prototiles - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_set_of_prototiles

    Although a cube is the only regular polyhedron that admits of tessellation, many non-regular 3-dimensional shapes can tessellate, such as the truncated octahedron. The second part of Hilbert's eighteenth problem asked for a single polyhedron tiling Euclidean 3-space, such that no tiling by it is isohedral (an anisohedral tile).

  6. Triangular tiling - Wikipedia

    en.wikipedia.org/wiki/Triangular_tiling

    In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at

  7. Honeycomb (geometry) - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_(geometry)

    It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space. Honeycombs are usually constructed in ordinary Euclidean ("flat") space. They may also be constructed in non-Euclidean spaces, such as hyperbolic honeycombs.

  8. Edge tessellation - Wikipedia

    en.wikipedia.org/wiki/Edge_tessellation

    A kaleidoscope whose mirrors are arranged in the shape of one of these tiles will produce the appearance of an edge tessellation. However, in the tessellations generated by kaleidoscopes, it does not work to have vertices of odd degree, because when the image within a single tile is asymmetric there would be no way to reflect that image ...

  9. State of matter - Wikipedia

    en.wikipedia.org/wiki/State_of_matter

    A vapor can exist in equilibrium with a liquid (or solid), in which case the gas pressure equals the vapor pressure of the liquid (or solid). A supercritical fluid (SCF) is a gas whose temperature and pressure are above the critical temperature and critical pressure respectively. In this state, the distinction between liquid and gas disappears.