Search results
Results from the WOW.Com Content Network
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence (). As a consequence the partial sums of the series only consists of two terms of ( a n ) {\displaystyle (a_{n})} after cancellation.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
This series was first considered by Euler, who applied summability methods to assign a finite value to the series. [1] The series is a sum of factorials that are alternately added or subtracted. One way to assign a value to this divergent series is by using Borel summation , where one formally writes
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
The binary number system expresses any number as a sum of powers of 2, and denotes it as a sequence of 0 and 1, separated by a binary point, where 1 indicates a power of 2 that appears in the sum; the exponent is determined by the place of this 1: the nonnegative exponents are the rank of the 1 on the left of the point (starting from 0), and ...
The addition of two divergent series may yield a convergent series: for instance, the addition of a divergent series with a series of its terms times will yield a series of all zeros that converges to zero. However, for any two series where one converges and the other diverges, the result of their addition diverges. [35]
Viète obtained his formula by comparing the areas of regular polygons with 2 n and 2 n + 1 sides inscribed in a circle. [ 1 ] [ 2 ] The first term in the product, 2 / 2 {\displaystyle {\sqrt {2}}/2} , is the ratio of areas of a square and an octagon , the second term is the ratio of areas of an octagon and a hexadecagon , etc.
The conjecture asks whether the equation has an infinitude of solutions in which the sum of the reciprocals of the three exponents in the equation must be less than 1. The purpose of this restriction is to preclude the known infinitude of solutions in which two exponents are 2 and the other exponent is any even number.