Ad
related to: elimination equations
Search results
Results from the WOW.Com Content Network
Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.
In commutative algebra and algebraic geometry, elimination theory is the classical name for algorithmic approaches to eliminating some variables between polynomials of several variables, in order to solve systems of polynomial equations. Classical elimination theory culminated with the work of Francis Macaulay on multivariate resultants, as ...
When the equations are independent, each equation contains new information about the variables, and removing any of the equations increases the size of the solution set. For linear equations, logical independence is the same as linear independence. The equations x − 2y = −1, 3x + 5y = 8, and 4x + 3y = 7 are linearly dependent. For example ...
Thus the name Gaussian elimination is only a convenient abbreviation of a complex history. The LU decomposition was introduced by the Polish astronomer Tadeusz Banachiewicz in 1938. [4] To quote: "It appears that Gauss and Doolittle applied the method [of elimination] only to symmetric equations.
More precisely, the system of equations defines an algebraic set which may have several irreducible components, and one must remove the components on which the degeneracy conditions are everywhere zero. This is done by saturating the equations by the degeneracy conditions, which may be done via the elimination property of Gröbner bases.
In other situations, the system of equations may be block tridiagonal (see block matrix), with smaller submatrices arranged as the individual elements in the above matrix system (e.g., the 2D Poisson problem). Simplified forms of Gaussian elimination have been developed for these situations. [6]
Elimination theory, the theory of the methods to eliminate variables between polynomial equations. Disjunctive syllogism, a rule of inference; Gaussian elimination, a method of solving systems of linear equations; Fourier–Motzkin elimination, an algorithm for reducing systems of linear inequalities
A system of linear equations is said to be in row echelon form if its augmented matrix is in row echelon form. Similarly, a system of linear equations is said to be in reduced row echelon form or in canonical form if its augmented matrix is in reduced row echelon form. The canonical form may be viewed as an explicit solution of the linear system.
Ad
related to: elimination equations