enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves.

  3. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function ⁠ 1 / Γ(z) ⁠ is an entire function.

  4. Gyromagnetic ratio - Wikipedia

    en.wikipedia.org/wiki/Gyromagnetic_ratio

    Since a gyromagnetic factor equal to 2 follows from Dirac's equation, it is a frequent misconception to think that a g-factor 2 is a consequence of relativity; it is not. The factor 2 can be obtained from the linearization of both the Schrödinger equation and the relativistic Klein–Gordon equation (which leads to Dirac's).

  5. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.

  6. Lanczos approximation - Wikipedia

    en.wikipedia.org/wiki/Lanczos_approximation

    Thus computing the gamma function becomes a matter of evaluating only a small number of elementary functions and multiplying by stored constants. The Lanczos approximation was popularized by Numerical Recipes , according to which computing the gamma function becomes "not much more difficult than other built-in functions that we take for granted ...

  7. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The study of analogies of this type is known as umbral calculus. A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Falling and rising factorials are Sheffer sequences of binomial type, as shown by the relations:

  8. Gamma matrices - Wikipedia

    en.wikipedia.org/wiki/Gamma_matrices

    The defining property for the gamma matrices to generate a Clifford algebra is the anticommutation relation {,} = + = ,where the curly brackets {,} represent the anticommutator, is the Minkowski metric with signature (+ − − −), and is the 4 × 4 identity matrix.

  9. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Roughly speaking, the explicit formula says the Fourier transform of the zeros of the zeta function is the set of prime powers plus some elementary factors. Once this is said, the formula comes from the fact that the Fourier transform is a unitary operator, so that a scalar product in time domain is equal to the scalar product of the Fourier ...