enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrodynamic tether - Wikipedia

    en.wikipedia.org/wiki/Electrodynamic_tether

    Here , , and describe the current gain from point A to B, the current lost from point B to C, and the current lost at point C, respectively. Since the current is continuously changing along the bare length of the tether, the potential loss due to the resistive nature of the wire is represented as ∫ A C I ( y ) d R t {\displaystyle \textstyle ...

  3. Birkeland current - Wikipedia

    en.wikipedia.org/wiki/Birkeland_current

    A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field (IMF) and by bulk motions ...

  4. Cryotron - Wikipedia

    en.wikipedia.org/wiki/Cryotron

    The cryotron is a switch that operates using superconductivity. [1] The cryotron works on the principle that magnetic fields destroy superconductivity. This simple device consists of two superconducting wires (e.g. tantalum and niobium) with different critical temperature (Tc). The cryotron was invented by Dudley Allen Buck of the Massachusetts ...

  5. Magnetohydrodynamics - Wikipedia

    en.wikipedia.org/wiki/Magnetohydrodynamics

    Electron Magnetohydrodynamics (EMHD) describes small scales plasmas when electron motion is much faster than the ion one. The main effects are changes in conservation laws, additional resistivity, importance of electron inertia. Many effects of Electron MHD are similar to effects of the Two fluid MHD and the Hall MHD.

  6. Magnetospheric electric convection field - Wikipedia

    en.wikipedia.org/wiki/Magnetospheric_electric...

    Magnetospheric electric convection field. Electric field created by impact of solar wind onto the magnetosphere. The impact of the solar wind onto the magnetosphere generates an electric field within the inner magnetosphere (r < 10 a; with a the Earth's radius) - the convection field. [1] Its general direction is from dawn to dusk.

  7. Magnetosphere particle motion - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere_particle_motion

    Magnetosphere particle motion. A sketch of Earth's magnetic field representing the source of Earth's magnetic field as a magnet The North Pole of Earth is near the top of the diagram, the South Pole near the bottom. Notice that the South Pole of that magnet is deep in Earth's interior below Earth's North Magnetic Pole.

  8. Magnetospheric Multiscale Mission - Wikipedia

    en.wikipedia.org/wiki/Magnetospheric_Multiscale...

    Magnetospheric Multiscale Mission. The Magnetospheric Multiscale (MMS) Mission is a NASA robotic space mission to study the Earth's magnetosphere, using four identical spacecraft flying in a tetrahedral formation. [1] The spacecraft were launched on 13 March 2015 at 02:44 UTC. [2]

  9. Plasmasphere - Wikipedia

    en.wikipedia.org/wiki/Plasmasphere

    The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere. The outer boundary of the plasmasphere is known as the plasmapause, which is defined by an order of magnitude drop in plasma density. In 1963 American scientist Don Carpenter and Soviet ...