Search results
Results from the WOW.Com Content Network
This can be done in terms of the chemical elements present, or by molecular structure e.g., water, protein, fats (or lipids), hydroxyapatite (in bones), carbohydrates (such as glycogen and glucose) and DNA. In terms of tissue type, the body may be analyzed into water, fat, connective tissue, muscle, bone, etc.
The enzymes that join glucose to other molecules usually use phosphorylated glucose to power the formation of the new bond by coupling it with the breaking of the glucose-phosphate bond. Other than its direct use as a monomer, glucose can be broken down to synthesize a wide variety of other biomolecules.
Glucose molecules are added to the chains of glycogen as long as both insulin and glucose remain plentiful. In this postprandial or "fed" state, the liver takes in more glucose from the blood than it releases. After a meal has been digested and glucose levels begin to fall, insulin secretion is reduced, and glycogen synthesis stops.
Chemoorganotrophs are organisms which use the chemical energy in organic compounds as their energy source and obtain electrons or hydrogen from the organic compounds, including sugars (i.e. glucose), fats and proteins. [2] Chemoheterotrophs also obtain the carbon atoms that they need for cellular function from these organic compounds.
This is an index of lists of molecules (i.e. by year, number of atoms, etc.). Millions of molecules have existed in the universe since before the formation of Earth. Three of them, carbon dioxide, water and oxygen were necessary for the growth of life.
Macronutrients are defined as a class of chemical compounds which humans consume in relatively large quantities compared to vitamins and minerals which provide humans with energy. Fat has a food energy content of 38 kilojoules per gram (9 kilocalories per gram) proteins and carbohydrates 17 kJ/g (4 kcal/g). [2]
This is a list of sugars and sugar products. Sugar is the generalized name for sweet, short-chain, soluble carbohydrates, many of which are used in food. They are composed of carbon, hydrogen, and oxygen. There are various types of sugar derived from different sources. Generally speaking, chemical names ending in -ose indicate sugars.
Hence the citric acid cycle can start at acetyl-CoA when fat is being broken down for energy if there is little or no glucose available. The energy yield of the complete oxidation of the fatty acid palmitate is 106 ATP. [2]: 625–6 Unsaturated and odd-chain fatty acids require additional enzymatic steps for degradation.