enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]

  3. Deamination - Wikipedia

    en.wikipedia.org/wiki/Deamination

    Deamination is the removal of an amino group from a molecule. [1] Enzymes that catalyse this reaction are called deaminases.. In the human body, deamination takes place primarily in the liver; however, it can also occur in the kidney.

  4. β-Glucosidase - Wikipedia

    en.wikipedia.org/wiki/Β-Glucosidase

    In the case of the Christmas Island red crab β-glucosidase not only produces glucose, but also removes cellobiose. [15] This is important as cellobiose is an inhibitor for a number of enzymes including endo-β-1,4-glucanase and cellobiohydrolase. β-Glucosidase is also capable of hydrolysis on small oligomers that are produced by other enzymes ...

  5. Glucose - Wikipedia

    en.wikipedia.org/wiki/Glucose

    Glucose circulates in the blood of animals as blood sugar. [5] [7] The naturally occurring form is d-glucose, while its stereoisomer l-glucose is produced synthetically in comparatively small amounts and is less biologically active. [7] Glucose is a monosaccharide containing six carbon atoms and an aldehyde group, and is therefore an aldohexose ...

  6. Glycogenolysis - Wikipedia

    en.wikipedia.org/wiki/Glycogenolysis

    This exposes the α[1→6] branching point, which is hydrolysed by α[1→6] glucosidase, removing the final glucose residue of the branch as a molecule of glucose and eliminating the branch. This is the only case in which a glycogen metabolite is not glucose-1-phosphate. The glucose is subsequently phosphorylated to glucose-6-phosphate by ...

  7. Glycogen debranching enzyme - Wikipedia

    en.wikipedia.org/wiki/Glycogen_debranching_enzyme

    Notable within this structure is a groove 26 angstroms long and 9 angstroms wide, containing aromatic residues that are thought to stabilize a four-glucose branch before cleavage. [ 6 ] The glycogen-degrading enzyme of the archaea Sulfolobus solfataricus , treX, provides an interesting example of using a single active site for two activities ...

  8. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Glycogen is a highly branched structure, consisting of the core protein Glycogenin, surrounded by branches of glucose units, linked together. [ 2 ] [ 12 ] The branching of glycogen increases its solubility, and allows for a higher number of glucose molecules to be accessible for breakdown at the same time. [ 2 ]

  9. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    Organisation of enzyme structure and lysozyme example. Binding sites in blue, catalytic site in red and peptidoglycan substrate in black. (In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction.