Search results
Results from the WOW.Com Content Network
A monosubstituted cyclohexane is one in which there is one non-hydrogen substituent in the cyclohexane ring. The most energetically favorable conformation for a monosubstituted cyclohexane is the chair conformation with the non-hydrogen substituent in the equatorial position because it prevents high steric strain from 1,3 diaxial interactions. [11]
Substituents on a cyclohexane ring prefer to reside in the equatorial position to the axial. The difference in Gibbs free energy (ΔG) between the higher energy conformation (axial substitution) and the lower energy conformation (equatorial substitution) is the A-value for that particular substituent.
If cyclohexane is mono-substituted with a large substituent, then the substituent will most likely be found attached in an equatorial position, as this is the slightly more stable conformation. Cyclohexane has the lowest angle and torsional strain of all the cycloalkanes; as a result cyclohexane has been deemed a 0 in total ring strain.
The repulsion between an axial t-butyl group and hydrogen atoms in the 1,3-diaxial position is so strong that the cyclohexane ring will revert to a twisted boat conformation. The strain in cyclic structures is usually characterized by deviations from ideal bond angles ( Baeyer strain ), ideal torsional angles ( Pitzer strain ) or transannular ...
A staggered projection appears to have the surrounding species equidistant from each other. This kind of conformation tends to experience both anti and gauche interactions. [5] Anti interactions refer to the molecules (usually of the same type) sitting exactly opposite of each other at 180° on the Newman projection. [5]
The chair conformation minimizes both angle strain and torsional strain by having all carbon-carbon bonds at 110.9° and all hydrogens staggered from one another. [2] The conformational changes that occur in a cyclohexane ring flip take place over several stages. Structure D (10.8 kcal/mol) is the highest energy transition state of the process.
There is a peak/local maximum at the boat conformation (C), and there are valleys/local minimums at the twist-boat conformations (B). In addition, cyclohexane conformations can be used to indicate if the molecule has any 1,3 diaxial-interactions which are steric interactions between axial substituents on the 1,3, and 5 carbons. [8]
For example, in the conformation of (Z)-4-methylpent-2-ene, the molecule isn't frozen in the favored conformer but rotates in the dihedral angle around 30° at <1kcal/mol cost. In stereoselective reactions, there are 2 effects of allylic strain on the reaction which is the sterics effect and the electronic effects.