Search results
Results from the WOW.Com Content Network
The ligase chain reaction (LCR) is a method of DNA amplification. The ligase chain reaction (LCR) is an amplification process that differs from polymerase chain reaction (PCR) in that it involves a thermostable ligase to join two probes or other molecules together which can then be amplified by standard PCR cycling. [ 1 ]
PlaToLoCo integrates and collects the output of five different state-of-the-art tools for discovering LCRs and provides functional annotations such as domain detection, transmembrane segment prediction, and calculation of amino acid frequencies. Furthermore, the union or intersection of the results of the search on a query sequence can be obtained.
In enzymology, a leucoanthocyanidin reductase (EC 1.17.1.3) (LAR, aka leucocyanidin reductase or LCR) is an enzyme that catalyzes the chemical reaction (2R,3S)-catechin + NADP + + H 2 O ⇌ {\displaystyle \rightleftharpoons } 2,3-trans-3,4-cis-leucocyanidin + NADPH + H +
As it refers to the product of an amplification reaction, amplicon is used interchangeably with common laboratory terms, such as "PCR product." Artificial amplification is used in research , [ 1 ] forensics , [ 2 ] and medicine [ 1 ] for purposes that include detection and quantification of infectious agents , [ 3 ] identification of human ...
The lower the value of the calculated entropy, the more homogeneous the region is in terms of amino acid content. In addition, a Neural Network webserver, LCR-hound has been developed to predict the function of an LCR, based on its amino acid or di-amino acid content. [ 8 ]
A locus control region (LCR) is a long-range cis-regulatory element that enhances expression of linked genes at distal chromatin sites. It functions in a copy number-dependent manner and is tissue-specific, as seen in the selective expression of β-globin genes in erythroid cells . [ 1 ]
If a and b are the signals from two amplicons in the patient sample, and A and B are the corresponding amplicons in the experimental control, then the dosage quotient DQ = (a/b) / (A/B). Although dosage quotients may be calculated for any pair of amplicons, it is usually the case that one of the pair is an internal reference probe.
The resulting signals and corresponding spiked silver concentrations are plotted, with concentration on the x-axis and the signal on the y-axis. A regression line is calculated through least squares analysis and the x-intercept of the line is determined by the ratio of the y-intercept and the slope of the regression line. This x-intercept ...