enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    There is also a constant s which is at most the cardinality of a maximum matching in the graph. The goal is to find a minimum-cost matching of size exactly s. The most common case is the case in which the graph admits a one-sided-perfect matching (i.e., a matching of size r), and s=r. Unbalanced assignment can be reduced to a balanced assignment.

  3. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Minimum maximal independent set a.k.a. minimum independent dominating set [4] NP-complete special cases include the minimum maximal matching problem, [3]: GT10 which is essentially equal to the edge dominating set problem (see above). Metric dimension of a graph [3]: GT61 Metric k-center; Minimum degree spanning tree; Minimum k-cut

  4. Maximum weight matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_weight_matching

    In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem , in which the input is restricted to be a bipartite graph , and the matching constrained to be have cardinality that of the ...

  5. Edmonds' algorithm - Wikipedia

    en.wikipedia.org/wiki/Edmonds'_algorithm

    It returns a spanning arborescence rooted at of minimum weight, where the weight of an arborescence is defined to be the sum of its edge weights, () = (). The algorithm has a recursive description. Let f ( D , r , w ) {\displaystyle f(D,r,w)} denote the function which returns a spanning arborescence rooted at r {\displaystyle r} of minimum weight.

  6. Christofides algorithm - Wikipedia

    en.wikipedia.org/wiki/Christofides_algorithm

    The minimum-weight perfect matching can have no larger weight, so w(M) ≤ w(C)/2. Adding the weights of T and M gives the weight of the Euler tour, at most 3w(C)/2. Thanks to the triangle inequality, even though the Euler tour might revisit vertices, shortcutting does not increase the weight, so the weight of the output is also at most 3w(C)/2 ...

  7. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Creating a matching Using a shortcut heuristic on the graph created by the matching above. The algorithm of Christofides and Serdyukov follows a similar outline but combines the minimum spanning tree with a solution of another problem, minimum-weight perfect matching. This gives a TSP tour which is at most 1.5 times the optimal.

  8. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    A minimum T-join can be obtained by constructing a complete graph on the vertices of T, with edges that represent shortest paths in the given input graph, and then finding a minimum weight perfect matching in this complete graph. The edges of this matching represent paths in the original graph, whose union forms the desired T-join.

  9. Perfect matching - Wikipedia

    en.wikipedia.org/wiki/Perfect_matching

    Every perfect matching is a maximum-cardinality matching, but the opposite is not true. For example, consider the following graphs: [1] In graph (b) there is a perfect matching (of size 3) since all 6 vertices are matched; in graphs (a) and (c) there is a maximum-cardinality matching (of size 2) which is not perfect, since some vertices are ...