enow.com Web Search

  1. Ad

    related to: how to calculate alpha decay in excel function

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.

  3. Alpha decay - Wikipedia

    en.wikipedia.org/wiki/Alpha_decay

    Alpha decay is by far the most common form of cluster decay, where the parent atom ejects a defined daughter collection of nucleons, leaving another defined product behind. It is the most common form because of the combined extremely high nuclear binding energy and relatively small mass of the alpha particle.

  4. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  5. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...

  6. Geiger–Nuttall law - Wikipedia

    en.wikipedia.org/wiki/Geiger–Nuttall_law

    In practice, this means that alpha particles from all alpha-emitting isotopes across many orders of magnitude of difference in half-life, all nevertheless have about the same decay energy. Formulated in 1911 by Hans Geiger and John Mitchell Nuttall as a relation between the decay constant and the range of alpha particles in air, [ 1 ] in its ...

  7. Branching fraction - Wikipedia

    en.wikipedia.org/wiki/Branching_fraction

    In particle physics and nuclear physics, the branching fraction (or branching ratio) for a decay is the fraction of particles that decay by an individual decay mode or with respect to the total number of particles which decay. It applies to either the radioactive decay of atoms or the decay of elementary particles. [1]

  8. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The formula for the exponential results from reducing the powers of G in the series expansion and identifying the respective series coefficients of G 2 and G with −cos(θ) and sin(θ) respectively. The second expression here for e Gθ is the same as the expression for R ( θ ) in the article containing the derivation of the generator , R ( θ ...

  9. Hurst exponent - Wikipedia

    en.wikipedia.org/wiki/Hurst_exponent

    A value H in the range 0.5–1 indicates a time series with long-term positive autocorrelation, meaning that the decay in autocorrelation is slower than exponential, following a power law; for the series it means that a high value tends to be followed by another high value and that future excursions to more high values do occur. A value in the ...

  1. Ad

    related to: how to calculate alpha decay in excel function