enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.

  3. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that the degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.

  4. Pre- and post-test probability - Wikipedia

    en.wikipedia.org/wiki/Pre-_and_post-test_probability

    It is possible to do a calculation of likelihood ratios for tests with continuous values or more than two outcomes which is similar to the calculation for dichotomous outcomes. For this purpose, a separate likelihood ratio is calculated for every level of test result and is called interval or stratum specific likelihood ratios. [4]

  5. Beneish M-score - Wikipedia

    en.wikipedia.org/wiki/Beneish_M-Score

    If M-score is less than -1.78, the company is unlikely to be a manipulator. For example, an M-score value of -2.50 suggests a low likelihood of manipulation. If M-score is greater than −1.78, the company is likely to be a manipulator. For example, an M-score value of -1.50 suggests a high likelihood of manipulation.

  6. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    The likelihood ratio is a function of the data ; therefore, it is a statistic, although unusual in that the statistic's value depends on a parameter, . The likelihood-ratio test rejects the null hypothesis if the value of this statistic is too small.

  7. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  8. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    Pearson's chi-squared test or Pearson's test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates , likelihood ratio , portmanteau test in time series , etc.) – statistical ...

  9. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    If the likelihood ratio chi-square statistic is significant, then the model does not fit well (i.e., calculated expected frequencies are not close to observed frequencies). Backward elimination is used to determine which of the model components are necessary to retain in order to best account for the data.