enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    Any ellipsoid is the image of the unit sphere under some affine transformation, and any plane is the image of some other plane under the same transformation. So, because affine transformations map circles to ellipses, the intersection of a plane with an ellipsoid is an ellipse or a single point, or is empty. [8] Obviously, spheroids contain ...

  3. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities

  4. Ellipsoidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Ellipsoidal_coordinates

    An alternative parametrization exists that closely follows the angular parametrization of spherical coordinates: [1] = ⁡ ⁡, = ⁡ ⁡, = ⁡. Here, > parametrizes the concentric ellipsoids around the origin and [,] and [,] are the usual polar and azimuthal angles of spherical coordinates, respectively.

  5. Flattening - Wikipedia

    en.wikipedia.org/wiki/Flattening

    A circle of radius a compressed to an ellipse. A sphere of radius a compressed to an oblate ellipsoid of revolution. Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity, or oblateness.

  6. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    The prolate spheroid is generated by rotation about the z-axis of an ellipse with semi-major axis c and semi-minor axis a; therefore, e may again be identified as the eccentricity. (See ellipse.) [3] These formulas are identical in the sense that the formula for S oblate can

  7. John ellipsoid - Wikipedia

    en.wikipedia.org/wiki/John_ellipsoid

    In general, computing the John ellipsoid of a given convex body is a hard problem. However, for some specific cases, explicit formulas are known. Some cases are particularly important for the ellipsoid method. [5]: 70–73 Let E(A, a) be an ellipsoid in ⁠, ⁠ defined by a matrix A and center a.

  8. Unit sphere - Wikipedia

    en.wikipedia.org/wiki/Unit_sphere

    The classical equation of a unit sphere is that of the ellipsoid with a radius of 1 and no alterations to the -, -, or - axes: x 2 + y 2 + z 2 = 1 {\displaystyle x^{2}+y^{2}+z^{2}=1} The volume of the unit ball in Euclidean n {\displaystyle n} -space, and the surface area of the unit sphere, appear in many important formulas of analysis .

  9. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    The ellipsoid method generates a sequence of ellipsoids whose volume uniformly decreases at every step, thus enclosing a minimizer of a convex function. When specialized to solving feasible linear optimization problems with rational data, the ellipsoid method is an algorithm which finds an optimal solution in a number of steps that is ...