Search results
Results from the WOW.Com Content Network
The convergent nozzle was replaced with a C-D nozzle on the same engine J57 in the same aircraft F-101. The increased thrust from the C-D nozzle (2,000 lb, 910 kg at sea-level take-off) on this engine raised the speed from Mach 1.6 to almost 2.0 enabling the Air Force to set a world's speed record of 1,207.6 mph (1,943.4 km/h) which was just ...
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.
The nozzle is usually convergent with a fixed flow area. Supersonic nozzle — For high nozzle pressure ratios (Nozzle Entry Pressure/Ambient Pressure) a convergent-divergent (de Laval) nozzle is used. The expansion to atmospheric pressure and supersonic gas velocity continues downstream of the throat and produces more thrust.
A de Laval nozzle has a convergent section followed by a divergent section and is often called a convergent-divergent (CD) nozzle ("con-di nozzle"). Convergent nozzles accelerate subsonic fluids. If the nozzle pressure ratio is high enough, then the flow will reach sonic velocity at the narrowest point (i.e. the nozzle throat). In this ...
Figure 1a shows the flow through the nozzle when it is completely subsonic (i.e. the nozzle is not choked). The flow in the chamber accelerates as it converges toward the throat, where it reaches its maximum (subsonic) speed at the throat. The flow then decelerates through the diverging section and exhausts into the ambient as a subsonic jet.
If p r is slightly less than p 0, the flow is subsonic throughout, with a minimum pressure at the throat, represented by curve B. As the pressure is reduced still further, a pressure is reached that result in M = 1 at the throat with subsonic flow throughout the remainder of the nozzle. There is another receiver pressure substantially below ...
The bell-shaped or contour nozzle is probably the most commonly used shaped rocket engine nozzle. It has a high angle expansion section (20 to 50 degrees) right behind the nozzle throat; this is followed by a gradual reversal of nozzle contour slope so that at the nozzle exit the divergence angle is small, usually less than a 10 degree half angle.