Search results
Results from the WOW.Com Content Network
The multi-fragment (MF) algorithm is a heuristic or approximation algorithm for the travelling salesman problem (TSP) (and related problems). This algorithm is also sometimes called the "greedy algorithm" for the TSP.
The case where the distance from A to B is not equal to the distance from B to A is called asymmetric TSP. A practical application of an asymmetric TSP is route optimization using street-level routing (which is made asymmetric by one-way streets, slip-roads, motorways, etc.). The stacker crane problem can be viewed as a special case of the ...
TSP is a programming language for the estimation and simulation of econometric models. TSP stands for "Time Series Processor", although it is also commonly used with cross section and panel data. The program was initially developed by Robert Hall during his graduate studies at Massachusetts Institute of Technology in the 1960s. [1]
Greedy algorithms determine the minimum number of coins to give while making change. These are the steps most people would take to emulate a greedy algorithm to represent 36 cents using only coins with values {1, 5, 10, 20}. The coin of the highest value, less than the remaining change owed, is the local optimum.
Form the subgraph of G using only the vertices of O: Construct a minimum-weight perfect matching M in this subgraph Unite matching and spanning tree T ∪ M to form an Eulerian multigraph Calculate Euler tour Here the tour goes A->B->C->A->D->E->A. Equally valid is A->B->C->A->E->D->A. Remove repeated vertices, giving the algorithm's output.
The Held–Karp algorithm, also called the Bellman–Held–Karp algorithm, is a dynamic programming algorithm proposed in 1962 independently by Bellman [1] and by Held and Karp [2] to solve the traveling salesman problem (TSP), in which the input is a distance matrix between a set of cities, and the goal is to find a minimum-length tour that visits each city exactly once before returning to ...
Consider finding a shortest path for traveling between two cities by car, as illustrated in Figure 1. Such an example is likely to exhibit optimal substructure. That is, if the shortest route from Seattle to Los Angeles passes through Portland and then Sacramento, then the shortest route from Portland to Los Angeles must pass through Sacramento too.
In an asymmetric bottleneck TSP, there are cases where the weight from node A to B is different from the weight from B to A (e. g. travel time between two cities with a traffic jam in one direction). The Euclidean bottleneck TSP, or planar bottleneck TSP, is the bottleneck TSP with the distance being the ordinary Euclidean distance. The problem ...