Search results
Results from the WOW.Com Content Network
In chemistry, homoconjugation has two unrelated meanings: In acid–base chemistry, homoconjugation is an alternate name for the phenomenon of homoassociation . In organic chemistry, homoconjugation is a type of conjugated system where two π-systems are separated by one non-conjugating group.
Bimolecular electron transfer always produces a reactive chemical species, free radicals. [citation needed] Nucleic acids (precisely the single, free nucleotides, not those bound in a DNA/RNA strand) have an extremely short lifetime due to a fast internal conversion. [3] Both melanin and DNA have some of the fastest internal conversion rates.
Intramolecular reactions, especially ones leading to the formation of 5- and 6-membered rings, are rapid compared to an analogous intermolecular process. This is largely a consequence of the reduced entropic cost for reaching the transition state of ring formation and the absence of significant strain associated with formation of rings of these ...
This bridge can be permanent, in which case the electron transfer event is termed intramolecular electron transfer. More commonly, however, the covalent linkage is transitory, forming just prior to the ET and then disconnecting following the ET event. In such cases, the electron transfer is termed intermolecular electron transfer.
An acid may also form hydrogen bonds to its conjugate base. This process, known as homoconjugation, has the effect of enhancing the acidity of acids, lowering their effective pK a values, by stabilizing the conjugate base. Homoconjugation enhances the proton-donating power of toluenesulfonic acid in acetonitrile solution by a factor of nearly ...
Crystalline solids and molecular solids are two opposite extreme cases of materials that exhibit substantially different transport mechanisms. While in atomic solids transport is intra-molecular, also known as band transport, in molecular solids the transport is inter-molecular, also known as hopping transport.
The actual mechanism of alkyl groups moving, as in Wagner–Meerwein rearrangement, probably involves transfer of the moving alkyl group fluidly along a bond, not ionic bond-breaking and forming. In pericyclic reactions, explanation by orbital interactions give a better picture than simple discrete electron transfers. It is, nevertheless ...
The original classical Marcus theory for outer sphere electron transfer reactions demonstrates the importance of the solvent and leads the way to the calculation of the Gibbs free energy of activation, using the polarization properties of the solvent, the size of the reactants, the transfer distance and the Gibbs free energy of the redox reaction.