enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Leibniz–Newton calculus controversy - Wikipedia

    en.wikipedia.org/wiki/LeibnizNewton_calculus...

    The earliest use of differentials in Leibniz's notebooks may be traced to 1675. He employed this notation in a 1677 letter to Newton. The differential notation also appeared in Leibniz's memoir of 1684. The claim that Leibniz invented the calculus independently of Newton rests on the basis that Leibniz:

  3. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    The original notation employed by Gottfried Leibniz is used throughout mathematics. It is particularly common when the equation y = f(x) is regarded as a functional relationship between dependent and independent variables y and x. Leibniz's notation makes this relationship explicit by writing the derivative as: [1].

  4. Leibniz's notation - Wikipedia

    en.wikipedia.org/wiki/Leibniz's_notation

    However, Leibniz did use his d notation as we would today use operators, namely he would write a second derivative as ddy and a third derivative as dddy. In 1695 Leibniz started to write d 2 ⋅ x and d 3 ⋅ x for ddx and dddx respectively, but l'Hôpital , in his textbook on calculus written around the same time, used Leibniz's original forms.

  5. Fluxion - Wikipedia

    en.wikipedia.org/wiki/Fluxion

    Newton's introduction of the notions "fluent" and "fluxion" in his 1736 book. A fluxion is the instantaneous rate of change, or gradient, of a fluent (a time-varying quantity, or function) at a given point. [1] Fluxions were introduced by Isaac Newton to describe his form of a time derivative (a derivative with respect to time).

  6. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    The growth rate of output is the time derivative of the flow of output divided by output itself. The growth rate of the labor force is the time derivative of the labor force divided by the labor force itself. And sometimes there appears a time derivative of a variable which, unlike the examples above, is not measured in units of currency:

  7. History of calculus - Wikipedia

    en.wikipedia.org/wiki/History_of_calculus

    Newton introduced the notation ˙ for the derivative of a function f. [49] Leibniz introduced the symbol for the integral and wrote the derivative of a function y of the variable x as , both of which are still in use. Since the time of Leibniz and Newton, many mathematicians have contributed to the continuing development of calculus.

  8. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each point in time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). Roughly speaking, the two operations can be ...

  9. Related rates - Wikipedia

    en.wikipedia.org/wiki/Related_rates

    Construct an equation relating the quantities whose rates of change are known to the quantity whose rate of change is to be found. Differentiate both sides of the equation with respect to time (or other rate of change). Often, the chain rule is employed at this step. Substitute the known rates of change and the known quantities into the equation.