Search results
Results from the WOW.Com Content Network
Sought: an element x 0 ∈ A such that f(x 0) ≤ f(x) for all x ∈ A ("minimization") or such that f(x 0) ≥ f(x) for all x ∈ A ("maximization"). Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming , but still in use for example in linear ...
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken.
The theorem of linear programming duality says that we can reduce the above minimization problem to the search problem: find x,y s.t. Ax ≤ b ; A T y = c ; y ≤ 0 ; c T x=b T y. The first problem is solvable iff the second problem is solvable; in case the problem is solvable, the x -components of the solution to the second problem are an ...
For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for the optimal conjugate gradient method. [6] This technique is used in stochastic gradient descent and as an extension to the backpropagation algorithms used to train artificial neural networks.
These minimization problems arise especially in least squares curve fitting. The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient descent. The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functions and ...
In mathematics, low-rank approximation refers to the process of approximating a given matrix by a matrix of lower rank. More precisely, it is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.
Coordinate descent is an optimization algorithm that successively minimizes along coordinate directions to find the minimum of a function.At each iteration, the algorithm determines a coordinate or coordinate block via a coordinate selection rule, then exactly or inexactly minimizes over the corresponding coordinate hyperplane while fixing all other coordinates or coordinate blocks.