Search results
Results from the WOW.Com Content Network
Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagnetic materials are noticeably attracted to a magnet, which is a consequence of their substantial ...
Most non-magnetic materials have a relatively small χ (on the order of a millionth), but soft magnets can have χ on the order of hundreds or thousands. For materials satisfying M = χ H , we can also write B = μ 0 (1 + χ ) H = μ 0 μ r H = μ H , where μ r = 1 + χ is the (dimensionless) relative permeability and μ =μ 0 μ r is the ...
Ferromagnetic materials with high coercivity are called magnetically hard, and are used to make permanent magnets. Materials with low coercivity are said to be magnetically soft. The latter are used in transformer and inductor cores, recording heads, microwave devices, and magnetic shielding.
Soft materials are important in a wide range of technological applications, and each soft material can often be associated with multiple disciplines. Liquid crystals, for example, were originally discovered in the biological sciences when the botanist and chemist Friedrich Reinitzer was investigating cholesterols. [10]
3, is in between soft and hard magnetic material and is usually classified as a semi-hard material. [23] It is mainly used for its magnetostrictive applications like sensors and actuators [24] thanks to its high saturation magnetostriction (~200 ppm). Co Fe 2 O 4 has also the benefits to be rare-earth free, which makes it a good substitute for ...
Anisotropic alnico magnets are oriented by heating above a critical temperature and cooling in the presence of a magnetic field. Both isotropic and anisotropic alnico require proper heat treatment to develop optimal magnetic properties. Without it, alnico's coercivity is about 10 Oe, comparable to technical iron, a soft magnetic material.
A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, loudspeakers, magnetic recording heads, and magnetic assemblies.
Molecule-based magnets (MBMs) or molecular magnets are a class of materials capable of displaying ferromagnetism and other more complex magnetic phenomena. This class expands the materials properties typically associated with magnets to include low density, transparency, electrical insulation, and low-temperature fabrication, as well as combine magnetic ordering with other properties such as ...