Search results
Results from the WOW.Com Content Network
This means that one may use Jordan forms that only exist over a larger field to determine whether the given matrices are similar. In the definition of similarity, if the matrix P can be chosen to be a permutation matrix then A and B are permutation-similar; if P can be chosen to be a unitary matrix then A and B are unitarily equivalent.
Similarity Matrix of Proteins (SIMAP) is a database of protein similarities created using volunteer computing. [ 1 ] [ 2 ] It is freely accessible for scientific purposes. SIMAP uses the FASTA algorithm to precalculate protein similarity, while another application uses hidden Markov models to search for protein domains .
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
Two similar matrices represent the same linear map, but with respect to a different basis; unitary equivalence corresponds to a change from an orthonormal basis to another orthonormal basis. If A and B are unitarily equivalent, then tr AA * = tr BB *, where tr denotes the trace (in other words, the Frobenius norm is a unitary invariant).
Not every square matrix is similar to a companion matrix, but every square matrix is similar to a block diagonal matrix made of companion matrices. If we also demand that the polynomial of each diagonal block divides the next one, they are uniquely determined by A , and this gives the rational canonical form of A .
Matrix congruence is an equivalence relation. Matrix congruence arises when considering the effect of change of basis on the Gram matrix attached to a bilinear form or quadratic form on a finite-dimensional vector space: two matrices are congruent if and only if they represent the same bilinear form with respect to different bases.
In mathematics, in the area of numerical analysis, Galerkin methods are a family of methods for converting a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions.
From a related word or phrase: This is a redirect from a word or phrase to a page title that is related in some way.This redirect might be a good search term, or it could be a candidate for a Wiktionary link.