Search results
Results from the WOW.Com Content Network
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
If (x 1, x 2, x 3) are the Cartesian coordinates and (u 1, u 2, u 3) are the orthogonal coordinates, then = + + is the length of the coordinate vector corresponding to u i. The remaining two components of curl result from cyclic permutation of indices : 3,1,2 → 1,2,3 → 2,3,1.
C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do not exist.
Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:
A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis (axis L in the image opposite), the direction from the axis relative to a chosen reference direction (axis A), and the distance from a chosen reference plane perpendicular to the axis (plane ...
The Laplace operator is a scalar operator that can be applied to either vector or scalar fields; for cartesian coordinate systems it is defined as: Δ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 = ∇ ⋅ ∇ = ∇ 2 {\displaystyle \Delta ={\partial ^{2} \over \partial x^{2}}+{\partial ^{2} \over \partial y^{2}}+{\partial ^{2} \over ...
The volume coefficient ρ is a function of position which depends on the coordinate system. In Cartesian, cylindrical and spherical coordinates, using the same conventions as before, we have ρ = 1, ρ = r and ρ = r 2 sin θ, respectively.
A vector v (red) represented by • a vector basis (yellow, left: e 1, e 2, e 3), tangent vectors to coordinate curves (black) and • a covector basis or cobasis (blue, right: e 1, e 2, e 3), normal vectors to coordinate surfaces (grey) in general (not necessarily orthogonal) curvilinear coordinates (q 1, q 2, q 3). The basis and cobasis do ...