enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  3. Uncountably infinite - Wikipedia

    en.wikipedia.org/?title=Uncountably_infinite&...

    Download as PDF; Printable version; From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Uncountable set ...

  4. Uncountable - Wikipedia

    en.wikipedia.org/?title=Uncountable&redirect=no

    Download as PDF; Printable version ... move to sidebar hide. From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Uncountable set; ... Wikipedia® is a ...

  5. Skolem's paradox - Wikipedia

    en.wikipedia.org/wiki/Skolem's_paradox

    In mathematical logic and philosophy, Skolem's paradox is the apparent contradiction that a countable model of first-order set theory could contain an uncountable set. The paradox arises from part of the Löwenheim–Skolem theorem ; Thoralf Skolem was the first to discuss the seemingly contradictory aspects of the theorem, and to discover the ...

  6. Perfect set property - Wikipedia

    en.wikipedia.org/wiki/Perfect_set_property

    The Cantor–Bendixson theorem states that closed sets of a Polish space X have the perfect set property in a particularly strong form: any closed subset of X can be written uniquely as the disjoint union of a perfect set and a countable set. In particular, every uncountable Polish space has the perfect set property, and can be written as the ...

  7. Infinite set - Wikipedia

    en.wikipedia.org/wiki/Infinite_set

    The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. [1] It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in Zermelo–Fraenkel set theory (ZFC), but only by showing that it follows from the existence of the natural numbers.

  8. Null set - Wikipedia

    en.wikipedia.org/wiki/Null_set

    The Cantor set is an example of an uncountable null set. It is uncountable because it contains all real numbers between 0 and 1 whose ternary form decimal expansion can be written using only 0’s and 2’s, and it is null because it is constructed by beginning with the closed interval of real numbers from 0 to 1 and multiplying the length by 2 ...

  9. Almost all - Wikipedia

    en.wikipedia.org/wiki/Almost_all

    More generally, let S be an infinite set of positive integers, such as the set of even positive numbers or the set of primes, if A is a subset of S, and if the proportion of elements of S below n that are in A (out of all elements of S below n) tends to 1 as n tends to infinity, then it can be said that almost all elements of S are in A. Examples: