Search results
Results from the WOW.Com Content Network
The dominant muon decay mode (sometimes called the Michel decay after Louis Michel) is the simplest possible: the muon decays to an electron, an electron antineutrino, and a muon neutrino. Antimuons, in mirror fashion, most often decay to the corresponding antiparticles: a positron , an electron neutrino, and a muon antineutrino.
Decay time of muons: The time dilation formula is = , where T 0 is the proper time of a clock comoving with the muon, corresponding with the mean decay time of the muon in its proper frame. As the muon is at rest in S′, we have γ=1 and its proper time T′ 0 is measured.
The Mu to E Gamma (MEG) is a particle physics experiment dedicated to measuring the decay of the muon into an electron and a photon, a decay mode which is heavily suppressed in the Standard Model by lepton flavour conservation, but enhanced in supersymmetry and grand unified theories. [1]
In particle physics, a lepton is an elementary particle of half-integer spin (spin 1 / 2 ) that does not undergo strong interactions. [1] Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), including the electron, muon, and tauon, and neutral leptons, better known as neutrinos.
One may integrate over the phase space to obtain the total decay rate for the specified final state. If a particle has multiple decay branches or modes with different final states, its full decay rate is obtained by summing the decay rates for all branches. The branching ratio for each mode is given by its decay rate divided by the full decay rate.
The first candidate for Yukawa's meson, in modern terminology known as the muon, was discovered in 1936 by Carl David Anderson and others in the decay products of cosmic ray interactions. The "mu meson" had about the right mass to be Yukawa's carrier of the strong nuclear force, but over the course of the next decade, it became evident that it ...
decaying after a mean lifetime of 26.033 nanoseconds (2.6033 × 10 −8 seconds), and the neutral pion π 0 decaying after a much shorter lifetime of 85 attoseconds (8.5 × 10 −17 seconds). [1] Charged pions most often decay into muons and muon neutrinos, while neutral pions generally decay into gamma rays.
The muon spin motion may be measured over a time scale dictated by the muon decay, i.e. a few times τ μ, roughly 10 μs. The asymmetry in the muon decay correlates the positron emission and the muon spin directions. The simplest example is when the spin direction of all muons remains constant in time after implantation (no motion).