Search results
Results from the WOW.Com Content Network
Permeability is a property of foundry sand with respect to how well the sand can vent, i.e. how well gases pass through the sand. And in other words, permeability is the property by which we can know the ability of material to transmit fluid/gases. The permeability is commonly tested to see if it is correct for the casting conditions. [1]
If concrete is fully dried, it does not creep, but it is next to impossible to dry concrete fully without severe cracking. Fig. 1. Changes of pore water content due to drying or wetting processes cause significant volume changes of concrete in load-free specimens.
Road salt contains chlorides that could migrate through the porous pavement into groundwater. Snow plow blades could catch block edges of concrete pavers or other block installations, damaging surfaces and creating potholes. Sand cannot be used for snow and ice control on porous surfaces because it will plug the pores and reduce permeability. [17]
In fluid mechanics, fluid flow through porous media is the manner in which fluids behave when flowing through a porous medium, for example sponge or wood, or when filtering water using sand or another porous material. As commonly observed, some fluid flows through the media while some mass of the fluid is stored in the pores present in the media.
Concrete, like most consolidated hard rocks, is a material very resistant to compression but which cannot withstand tension, especially internal tensions. Its tensile strength is about 10 times lower than its compressive strength.
Dilatancy of a sample of dense sand in simple shear. The phenomenon of dilatancy can be observed in a drained simple shear test on a sample of dense sand. In the initial stage of deformation, the volumetric strain decreases as the shear strain increases. But as the stress approaches its peak value, the volumetric strain starts to increase.
The coefficient of permeability varies with the void ratio as e/sup>/(1+e). For a given soil, the greater the void ratio, the higher the value of the coefficient of permeability. Here 'e' is the void ratio. Based on other concepts it has been established that the permeability of a soil varies as e 2 or e 3 /(1+e). Whatever may be the exact ...
The ultimate strength of concrete is influenced by the water-cementitious ratio (w/cm), the design constituents, and the mixing, placement and curing methods employed.All things being equal, concrete with a lower water-cement (cementitious) ratio makes a stronger concrete than that with a higher ratio. [2]