enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid, size of the body, expressed in terms of its wetted area A, and; drag force F d.

  3. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  4. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    Blue line: drag force; red line: inertia force; black line: total force according to the Morison equation. Note that the inertia force is in front of the phase of the drag force: the flow velocity is a sine wave, while the local acceleration is a cosine wave as a function of time.

  5. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    For example, consider a small sphere with radius = 0.5 micrometre (diameter = 1.0 μm) moving through water at a velocity of 10 μm/s. Using 10 −3 Pa·s as the dynamic viscosity of water in SI units, we find a drag force of 0.09 pN. This is about the drag force that a bacterium experiences as it swims through water.

  6. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Stokes' law is important for understanding the swimming of microorganisms and sperm; also, the sedimentation of small particles and organisms in water, under the force of gravity. [ 5 ] In air, the same theory can be used to explain why small water droplets (or ice crystals) can remain suspended in air (as clouds) until they grow to a critical ...

  7. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    The FF theory states that for a fluid under shear motion, the shear stress (i.e. the dragging force) acting between two moving layers can be separated into a term caused by dilute gas collisions, and a term caused by friction in the dense fluid.

  8. Computational chemistry - Wikipedia

    en.wikipedia.org/wiki/Computational_chemistry

    Computational studies, used to find a starting point for a laboratory synthesis or to assist in understanding experimental data, such as the position and source of spectroscopic peaks. [ 7 ] Computational studies, used to predict the possibility of so far entirely unknown molecules or to explore reaction mechanisms not readily studied via ...

  9. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The Reynolds number is the ratio of inertial forces to viscous forces within a fluid that is subjected to relative internal movement due to different fluid velocities. A region where these forces change behavior is known as a boundary layer, such as the bounding surface in the interior of a pipe. A similar effect is created by the introduction ...